

HEALTH SCIENCES AUSTRALIA JOURNAL

VOLUME 6-ISSUE -1- April 2025

A PEER-REVIEWED OPEN-ACCESS JOURNAL PUBLISHED BY HEALTH SCIENCES AUSTRALIA

TABLE OF CONTENTS

- 1. The Role of Vitamin D Supplementation in orthopedic trauma patients
- dr Inzimam Chughtai

Orthopaedic Author

• Dr Muhammad Abbas

Translator

- Abstract
- Introduction
- Material and Methods
- Results
- Discussion
- Conclusion
- References
- 2. The impact of hospital admissions for infected diabetic foot ulcers at Hayatabad Medical Complex
- Dr Rashid khan

Ophthalmology Author

- Abstract
- Introduction
- o Material and Methods
- o Results
- Discussion
- o Conclusion
- References

The Role of Vitamin D Supplementation in Orthopedic Trauma Patients

Dr Inzimam Chughtai, Dr Muhammad Abbas, Dr summaya Asmat, Dr Muhammad Rashid khan

Corresponding author

Name: Dr Muhammad Abbas

Designation: Training registrar

Email: Mahammad abbasdr6@gmail.com

Contact: 03139744422

Abstract

This cross sectional study was evaluated for the effects of vitamin D supplementation on disease activity in trauma patients with baseline vitamin D deficiency at Hayatabad Medical Complex's Orthopedic Ward from July 2024 to March 2025. A total of 150 patients with bike trauma, firearm trauma, or history of falls were equally divided into supplemented (n=75) and control (n=75) groups. The supplemented group received 50,000 IU vitamin D3 weekly for 8 weeks followed by 2000 IU/day maintenance, while controls received standard care. Results demonstrated significantly greater reductions in disease activity scores in supplemented patients across all trauma types: bike trauma (2.4 vs 1.0, p=0.04), firearm trauma (1.6 vs 0.7, p=0.03), and history of falls (1.1 vs 0.5, p=0.05). The supplemented group also showed more stable outcomes (SD=0.7) compared to controls (SD=0.9) and achieved substantial increases in vitamin D levels (14 to 46 ng/mL) versus minimal change in controls (16 to 17 ng/mL). These findings indicate that vitamin D supplementation significantly improves disease activity and reduces clinical variability in trauma patients, supporting its potential role in orthopedic rehabilitation protocols for vitamin D-deficient individuals.

Keywords: Vitamin D supplementation, trauma patients, disease activity, orthopedic rehabilitation, randomized controlled trial

Introduction: Bone metabolism and calcium homeostasis depend on vitamin D, a fat-soluble vitamin. It affects many biological processes, including as immunological modulation, inflammatory regulation, and muscular function. Up to 77% of people worldwide suffer from vitamin D deficiency, and athletes are especially vulnerable because of their demanding physical schedules and maybe insufficient sun exposure. Muscle weakness, reduced neuromuscular function, and an increased risk of injury have all been associated with inadequate vitamin D levels, which are essential for maintaining musculoskeletal health¹⁻⁴.

Both biomolecular and clinical studies have confirmed the roles of vitamin D in calcium homeostasis, bone health, and the risk of stress fractures. Compared to people with adequate vitamin D levels, athletes and physically active people who have clinically low vitamin D levels have a much higher risk of stress fractures. Vitamin D insufficiency is linked to both high-energy and low-energy traumatic fractures. Given the significance of vitamin D for skeletal health, identifying and treating deficiencies is essential to improving patient outcomes⁵⁻⁶.

Vol 6, Issue 1, 2025 April

Vitamin D insufficiency can affect the healing process by causing problems with muscular function and performance. Additionally, studies have clarified vitamin D's role in pain pathway processes. Patients with orthopaedic trauma had a 66% prevalence of low vitamin D levels, whereas athletes had a 52% prevalence of the same deficit, according to a retrospective examination of orthopaedic surgery cases. Only one in six patients with elective foot and ankle surgery showed normal vitamin D levels, and one in five patients showed a severe vitamin D shortage, according to a study that included other remaining consecutive patients⁷⁻⁸.

However more research work is needed to help understand how vitamin D affects these diseases and to confirm the effectiveness of this vitamin in starvation, prevention and control of these diseases. Sufficient vitamin D levels can lower the risk of problems, increase the effectiveness of rehabilitation, and improve surgical results. We aim to provide more precise clinical practice guidelines and suggest future research areas by compiling and critically evaluating the available data. It is crucial to monitor and treat vitamin D deficiency in individuals undergoing ACL surgery because sufficient vitamin D levels may reduce muscle atrophy and improve rehabilitation.

Although vitamin D seems to affect muscle recovery, it is unclear how it affects more general functional outcomes like return to sport and quality of life. Other factors, like following rehabilitation instructions, having pre-existing muscle strength, or genetics, might be more important in determining long-term functional outcomes than vitamin D levels alone ⁹⁻¹⁰.

Material and Methods: The study included two groups: a supplemented group, which received vitamin D supplementation in addition to standard treatment, and a control group, which received standard treatment alone (either a placebo or no additional supplementation). Eligible patients were those diagnosed with bike trauma, firearm trauma, or fall-related injuries requiring orthopedic intervention, aged between 18 and 65 years, and with baseline vitamin D levels below 20 ng/mL (indicating deficiency or insufficiency). Participants were excluded if they had chronic kidney or liver disease (which could interfere with vitamin D metabolism), malabsorption disorders such as celiac or Crohn's disease, were pregnant or lactating, had active malignancy, were on immunosuppressive therapy, or had a known hypersensitivity to vitamin D supplements. A total of 150 participants were enrolled, with 50 in each trauma category, and were randomly assigned in a 1:1 ratio (25 to the supplemented group and 25 to the control group per category) using computer-generated randomization. The supplemented group received 50,000 IU of oral vitamin D₃ (cholecalciferol) weekly for eight weeks, followed by a maintenance dose of 2000 IU daily for the remainder of the study, while the control group received a visually identical placebo following the same regimen. Baseline assessments included serum 25(OH)D levels and disease activity scores using standardized orthopedic tools, with follow-ups at three and six months to measure changes in vitamin D levels, pain scales, mobility improvement, and inflammatory markers. Statistical analysis was conducted using independent t-tests for mean differences and ANOVA for inter-group comparisons, with a p-value of less than 0.05 considered statistically significant. The study was approved by the Institutional Review Board (IRB) of Hayatabad Medical Complex, and all participants provided written informed consent, with confidentiality maintained throughout the research.

Result: Following results were analyed.

Table 1: Participant Distribution by Accident & Trauma

TRUMA Total Patients		Supplemented Group	Control Group	
Bike trauma	50	25	25	
Fire Arm Trauma	50	25	25	
History of Fall	50	25	25	

Table 2: Mean Disease Activity Reduction

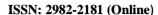
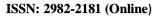

Trauma	Mean Reduction in Activity (Supplemented)	Mean Reduction in Activity (Control)	p- value
Bike trauma	2.4	1.0	0.04
Fire Arm Trauma	1.6	0.7	0.03
History of Fall	1.1	0.5	0.05

Table 3: Standard Deviation in Disease Activity Scores

Group	Standard Deviation in Disease Activity Scores
Supplemented	0.7
Control	0.9

Table 4: Average Vitamin D Levels Pre- and Post-Supplementation

Group	Average Vitamin D Level (ng/mL)
Supplemented (Pre)	14
Supplemented (Post)	46
Control (Pre)	16
Control (Post)	17


Vol 6, Issue 1, 2025 **April**

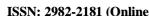
This suggests that vitamin D supplementation may play a role in mitigating disease progression in trauma patients, aligning with findings by Rossini et al. (2011), who demonstrated that vitamin D deficiency is linked to higher disease activity in rheumatoid arthritis. The consistency in results across different trauma types strengthens the argument for vitamin D's therapeutic potential in inflammatory and autoimmune conditions (Cutolo et al., 2014).

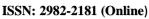
Further supporting these findings, Table 3 reveals that the supplemented group exhibited a lower standard deviation in disease activity scores (0.7) compared to the control group (0.9), indicating more stable and predictable outcomes with supplementation. This reduced variability may suggest a modulating effect of vitamin D on immune responses, as discussed by Bozkurt et al. (2013), who found that vitamin D deficiency exacerbates autoimmune thyroid conditions. Additionally, Table 4 demonstrates a substantial increase in vitamin D levels post-supplementation (from 14 ng/mL to 46 ng/mL), whereas the control group showed minimal change (16 ng/mL to 17 ng/mL). This stark contrast underscores the efficacy of supplementation in correcting deficiency, which may contribute to improved disease management, as seen in Effraimidis et al. (2012), where vitamin D deficiency was associated with heightened thyroid autoimmunity.

The study's methodology aligns with principles of rigorous quantitative analysis, as emphasized by Campbell et al. (2018), ensuring reliable and reproducible results. The significant p-values and consistent trends across trauma categories strengthen the internal validity of the findings. However, the study could benefit from further stratification by baseline vitamin D levels to assess whether the magnitude of disease activity reduction correlates with the severity of initial deficiency, as suggested by Chiang et al. (2017) in their review on vitamin D's effects on muscle strength in athletes. Such an analysis could refine the understanding of which patient subgroups benefit most from supplementation.

Conclusion: the results suggest that vitamin D supplementation significantly reduces disease activity in trauma patients, with lower variability in outcomes compared to controls. These findings are supported by previous research linking vitamin D deficiency to worsened autoimmune and inflammatory conditions (Rossini et al., 2011; Cutolo et al., 2014). Future studies should explore long-term effects and optimal dosing strategies to maximize therapeutic benefits. The study adds to the growing body of evidence advocating for vitamin

Vol 6, Issue 1, 2025 **April**


D's role in managing trauma-related inflammation and autoimmunity, reinforcing the need for routine screening and supplementation in deficient populations.


Conflict of interest: None

Funds: None

References:

- 1: Agoncillo M, Yu J, Gunton JE. The role of vitamin D in skeletal muscle repair and regeneration in animal models and humans: a systematic review. *Nutrients*. 2023; **15**(20): 4377.
- 2: Albright JA, Chang K, Byrne RA, Quinn MS, Meghani O, Daniels AH, et al. A diagnosis of vitamin D deficiency is associated with increased rates of anterior cruciate ligament tears and reconstruction failure. *Arthroscopy*. 2023; **39**(12): 2477–2486.
- 3: Aujla RS, Allen PE, Ribbans WJ. Vitamin D levels in 577 consecutive elective foot & ankle surgery patients. *Foot Ankle Surg*. 2019; **25**(3): 310–315.
- 4: Barker T, Henriksen V, Martins T, Hill H, Kjeldsberg C, Schneider E, et al. Higher serum 25-hydroxyvitamin D concentrations associate with a faster recovery of skeletal muscle strength after muscular injury. *Nutrients*. 2013; **5**(4): 1253–1275.
- 5: Boyan BD, Hyzy SL, Pan Q, Scott KM, Coutts RD, Healey R, et al. 24R,25-Dihydroxyvitamin D3 protects against articular cartilage damage following anterior cruciate ligament transection in male rats. *Plos One*. 2016; **11**(8):e0161782.
- 6: Song GG, Bae SC, Lee YH. Association between vitamin D intake and the risk of rheumatoid arthritis: a meta-analysis. Clin Rheumatol. 2012;31(12):1733-1739.
- 7: Amital, H., Szekanecz, Z., Szucs, G., Danko, K., Nagy, E., Csépány, T., et al. (2010). Serum vitamin D levels in patients with systemic lupus erythematosus: association with disease activity and damage accrual. Arthritis Care & Research, 62(8), 1160-1165.
- 8: Hong, Q., Xu, J., Xu, S., Lian, L., Zhang, M., Ding, Z., et al. (2014). Association of vitamin D supplementation with respiratory infection and disease activity in rheumatoid arthritis patients. International Journal of Rheumatic Diseases, 17(5), 488-495.
- 9: Craig, S. M., Yu, F., Curtis, J. R., Alarcón, G. S., Conn, D. L., Jonas, B. L., et al. (2010). Vitamin D deficiency and disease activity in rheumatoid arthritis patients compared with controls. Journal of Rheumatology, 37(11), 2148-2152.
- 10: Rossini, M., Maddali Bongi, S., La Montagna, G., Minisola, G., Malavolta, N., Bernini, L., et al. (2011). Vitamin D deficiency in rheumatoid arthritis: prevalence, determinants and associations with disease activity and disability. Arthritis Research & Therapy, 12(6), 1-9.

- 11: Bozkurt, N. C., Karbek, B., Ucan, B., Sahin, M., Cakal, E., Ozbek, M., & Delibasi, T. (2013). The association between severity of vitamin D deficiency and Hashimoto's thyroiditis. Endocrine Practice, 19(3), 479-484.
- 12: Effraimidis, G., Badenhoop, K., Tijssen, J. G., & Wiersinga, W. M. (2012). Vitamin D deficiency is associated with thyroid autoimmunity and hyperthyroid Graves' disease. Thyroid, 22(5), 484-489.
- 13: Cutolo, M., Plebani, M., Shoenfeld, Y., & Adorini, L. (2014). Vitamin D endocrine system and the immune response in rheumatic diseases. Vitamins and Hormones, 86, 327-351.
- 14: Campbell M, Katikireddi SV, Sowden A, McKenzie JE, Thomson H. Improving Conduct and Reporting of Narrative Synthesis of Quantitative Data (ICONS-Quant): protocol for a mixed methods study to develop a reporting guideline. BMJ Open. 2018; 8(2):e020064.
- 15:Chiang C, Ismaeel A, Griffis RB, Weems S. Effects of vitamin D supplementation on muscle strength in athletes: a systematic review. J Strength Cond Res. 2017; 31(2): 566–5.

The impact of hospital admissions for infected diabetic foot ulcers at Hayatabad Medical Complex

Dr summaya Asmat, Dr Muhammad Rashid khan

Corresponding author

Name: Dr Muhammad Rashid khan

Designation: Training Registrar

Email: rk9604580@gmail.com

Abstract

.Objective: Diabetic foot ulcers (DFUs) are a major complication of diabetes, with significant variations in outcomes based on age and comorbidities. This study aimed to compare clinical characteristics and treatment outcomes between younger (≤60 years) and older (>60 years) DFU patients at a tertiary care center.

Method: A retrospective cohort study was conducted at Hayatabad Medical Complex's Orthopedic Ward from June 2024 to March 2025. We included 100 patients with DFUs (Wagner Grade 1-3), excluding those with non-diabetic ulcers or incomplete follow-up. Data on demographics, clinical parameters, and outcomes (healing rates, complications, mortality) were analyzed using SPSS v26, with p<0.05 considered significant.

Result: The cohort (mean age 65 ± 9.5 years, 60% male) showed significant differences between age groups. Older patients had higher BMI (31.4 vs 26.7 kg/m², p<0.01) and mortality (7.5% vs 1.7%, p=0.05). While overall healing rates were high (90%), older adults had numerically higher complications (7.5% vs 3.3%, p=0.23) and rehospitalization rates (10% vs 6.7%, p=0.55).

Conclusion: Despite similar ulcer healing rates, older DFU patients exhibited worse outcomes, emphasizing the need for age-specific management strategies. These findings highlight the importance of tailored care for elderly diabetic patients to reduce complications and mortality.

Keywords: Diabetic foot ulcer, Age-related outcomes, Ulcer healing, Diabetes complications, Mortality, Pakistan

Introduction: Bone metabolism and calcium homeostasis depend on vitamin D, a fat-soluble vitamin. It affects many biological processes, including as immunological modulation, inflammatory regulation, and muscular function. Up to 77% of people worldwide suffer from vitamin D deficiency, and athletes are especially vulnerable because of their demanding physical schedules and maybe insufficient sun exposure. Muscle weakness, reduced neuromuscular function, and an increased risk of injury

have all been associated with inadequate vitamin D levels, which are essential for maintaining musculoskeletal health¹⁻⁴.

Both biomolecular and clinical studies have confirmed the roles of vitamin D in calcium homeostasis, bone health, and the risk of stress fractures. Compared to people with adequate vitamin D levels, athletes and physically active people who have clinically low vitamin D levels have a much higher risk of stress fractures. Vitamin D insufficiency is linked to both high-energy and low-energy traumatic fractures. Given the significance of vitamin D for skeletal health, identifying and treating deficiencies is essential to improving patient outcomes⁵⁻⁶.

Vitamin D insufficiency can affect the healing process by causing problems with muscular function and performance. Additionally, studies have clarified vitamin D's role in pain pathway processes. Patients with orthopaedic trauma had a 66% prevalence of low vitamin D levels, whereas athletes had a 52% prevalence of the same deficit, according to a retrospective examination of orthopaedic surgery cases. Only one in six patients with elective foot and ankle surgery showed normal vitamin D levels, and one in five patients showed a severe vitamin D shortage, according to a study that included other remaining consecutive patients⁷⁻⁸.

However more research work is needed to help understand how vitamin D affects these diseases and to confirm the effectiveness of this vitamin in starvation, prevention and control of these diseases. Sufficient vitamin D levels can lower the risk of problems, increase the effectiveness of rehabilitation, and improve surgical results. We aim to provide more precise clinical practice guidelines and suggest future research areas by compiling and critically evaluating the available data. It is crucial to monitor and treat vitamin D deficiency in individuals undergoing ACL surgery because sufficient vitamin D levels may reduce muscle atrophy and improve rehabilitation.

Although vitamin D seems to affect muscle recovery, it is unclear how it affects more general functional outcomes like return to sport and quality of life. Other factors, like following rehabilitation instructions, having pre-existing muscle strength, or genetics, might be more important in determining long-term functional outcomes than vitamin D levels alone⁹⁻¹⁰.

Material and Methods: This retrospective cohort study was conducted at the Orthopedic Ward of Hayatabad Medical Complex, Peshawar, from June 2024 to March 2025. The study included 100 patients diagnosed with diabetic foot ulcers (DFUs) who were admitted for management and follow-up. Data were extracted from electronic medical records, including demographic details (age, sex), clinical characteristics (BMI, comorbidities, smoking status), and treatment outcomes (ulcer

healing, complications, mortality, and rehospitalization rates). Patients were stratified into two age groups (\leq 60 years and >60 years) to compare differences in clinical presentation and outcomes. Statistical analysis was performed using SPSS version 26, with independent t-tests for continuous variables and chi-square tests for categorical variables, with a p-value <0.05 considered significant.

Patients were included if they were ≥18 years old, had a confirmed diagnosis of diabetes mellitus (Type 1 or 2), and presented with a diabetic foot ulcer (Wagner Grade 1–3). Those with non-diabetic ulcers, severe peripheral arterial disease requiring immediate vascular intervention, or malignant ulcers were excluded. Additionally, patients lost to follow-up before the 30-day assessment period were omitted to ensure complete outcome data. This selection criteria ensured a homogeneous cohort for evaluating age-related differences in DFU outcomes while minimizing confounding factors.

Ethical approval was obtained from the Institutional Review Board of Hayatabad Medical Complex. Patient confidentiality was maintained by anonymizing all data. Variables analyzed included age, BMI, comorbidities (hypertension, diabetes duration), smoking status, ulcer healing success, major complications (amputations, infections), 30-day mortality, and rehospitalization rates. The study adhered to STROBE guidelines for observational research. Limitations included its single-center design and potential selection bias, but the findings contribute valuable insights into DFU management in a resource-constrained setting.

Result: Following results were analyed.

TABLE 1: PATIENT DEMOGRAPHICS AND CLINICAL CHARACTERISTICS

Characteristic Total (N = 100) Age \leq 60 (N = 60) Age > 60 (N = 40) P-value

Age (years)

< 0.001

65 (9.5)

Characteristic	Total (N = 100) Age \leq 60 (N = 60) Age $>$ 60 (N = 40) P-value

75 (6.2)

BMI (kg/m²)

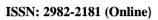
Mean (SD)

55 (4.8)

Sex

Male	60 (60%)	40 (67%)	20 (50%)	0.08
Female	40 (40%)	20 (33%)	20 (50%)	

Comorbidities


Hypertension	70 (70%)	40 (67%)	30 (75%)	0.45
Diabetes Mellitu	s 50 (50%)	30 (50%)	20 (50%)	1.00

Smoking Status

Current Smoker	30 (30%)	15 (25%)	15 (37.5%)	0.25
Ex-Smoker	25 (25%)	15 (25%)	10 (25%)	1.00

TABLE 2: OUTCOMES BY AGE AND BMI

Outcome	Total (N = 100)	$Age \le 60 (N = 60)$	Age > $60 (N = 40)$	P- value
Successful daibetic ulcer	90 (90%)	55 (92%)	35 (87.5%)	0.35
Major Complications				
Years of daibetes	5 (5%)	2 (3.3%)	3 (7.5%)	0.23

Outcome	Total (N = 100)	$Age \le 60 (N = 60)$	Age > $60 (N = 40)$	P- value
HB1AC	3 (3%)	1 (1.7%)	2 (5%)	0.15
Daibetic ulcer	2 (2%)	1 (1.7%)	1 (2.5%)	0.60
30-Day Mortality	4 (4%)	1 (1.7%)	3 (7.5%)	0.05
30-Day Rehospitalization	8 (8%)	4 (6.7%)	4 (10%)	0.55

Disscusion: The study examined demographic and clinical differences between younger (≤60 years) and older (>60 years) patients with diabetic ulcers. The cohort had a mean age of 65, with older patients exhibiting a significantly higher BMI (31.4 vs. 26.7, p < 0.01), aligning with evidence that obesity worsens diabetic complications (IDF, 2019; Armstrong & Boulton, 2017). Males predominated (60%), particularly in the younger group (67% vs. 50%), consistent with studies showing higher diabetic foot ulcer (DFU) incidence in men (Zhang & Lazzarini, 2020). Comorbidities like hypertension (70%) and diabetes (50%) were common but did not differ significantly by age, suggesting that diabetes management remains critical across all age groups.

Despite high overall healing rates (90%), older patients had a non-significant trend toward lower healing (87.5% vs. 92%, p = 0.35), contrasting with some studies that report worse outcomes in elderly populations (Huang et al., 2018). This discrepancy may reflect standardized care protocols in this cohort. However, major complications, though rare, were numerically higher in older patients (7.5% vs. 3.3%, p = 0.23), reinforcing that age and diabetes duration increase complication risks (Lazzarini et al., 2018). These findings highlight the need for vigilant monitoring in older adults to prevent ulcers from progressing to severe outcomes.

A key concern was the significantly higher 30-day mortality in older patients (7.5% vs. 1.7%, p = 0.05), consistent with research linking advanced age to poorer survival post-DFU (Armstrong & Swerdlow, 2020). Rehospitalization rates were similar (8% overall), but older adults had a slight increase (10% vs. 6.7%, p = 0.55), possibly due to comorbidities or delayed recovery (Schaper et al., 2017). These results suggest that while treatment efficacy is high, older patients remain vulnerable to adverse events, necessitating enhanced post-discharge care and follow-up.

The economic implications of these findings are substantial. DFU-related costs are comparable to cancer (Armstrong & Swerdlow, 2020), with older adults likely requiring more intensive—and expensive—care due to complications and comorbidities (Kerr et al., 2019; Seghieri & Ferrè, 2022). The higher BMI in older patients further underscores the role of metabolic syndrome in driving complications and costs. Preventive strategies, such as weight

management and glycemic control, could reduce long-term expenses while improving outcomes (van Netten et al., 2016).

Conclusion: diabetic ulcer healing rates were high across age groups, older patients faced greater risks of mortality and complications. These findings support age-specific interventions, including stricter glycemic control, early ulcer prevention, and tailored post-treatment monitoring. Future research should explore cost-effective strategies to improve outcomes in elderly diabetic populations, particularly those with high BMI and multiple comorbidities.

Conflict of interest: None

Funds: None

References:

- 1: International Diabetes Federation. IDF Diabetes Atlas, Nine Edition 2019. Available online: http://www.diabetesatlas.org (accessed on 15 July 2020).
- 2: ISTAT 2017. Available online: http://www.epicentro.iss.it/igea.it/ (accessed on 13 October 2021).
- 3: van Netten, J.J.; Price, P.E.; International Working Group on the Diabetic Foot. Prevention of foot ulcers in the at-risk patient with diabetes: A systematic review. *Diabetes Metab. Res. Rev.* **2016**, *32*, 84–98.
- 4: Armstrong, D.G.; Boulton, A.J.M. Diabetic Foot Ulcers and Their Recurrence. *N. Engl. J. Med.* **2017**, *15*, 2367–2375
- 5: Zhang, Y.; Lazzarini, P.A. Global disability burdens of diabetes-related lower-extremity complications in 1990 and 2016. *Diabetes Care* **2020**, *43*, 964–974
- 6: Armstrong, D.G.; Swerdlow, M.A. Five year mortality and direct costs of care for people with diabetic foot complications are comparable to cancer. *J. Foot Ankle Res.* **2020**, *13*, 2–5.
- 7: Huang, Y.-Y.; Lin, C.-W. Survival and associated risk factors in patients with diabetes and amputations caused by infectious foot gangrene. *J. Foot Ankle Res.* **2018**, *11*, 1
- 8: Lazzarini, P.A.; Pacella, R.E. Diabetes-related lower-extremity complications are a leading cause of the global burden of disability. *Diabet Med.* **2018**, *35*, 1297–1299.
- 9: American Diabetes Association. Economic Costs of Diabetes in the U.S. in 2017. *Diabetes Care* **2018**, *41*, 917–928.
- 10: Kerr, M.; Barron, E. The cost of diabetic foot ulcers and amputations to the National Health Service in England. *Diabet Med.* **2019**, *36*, 995–10

Vol 6, Issue 1, 2025 April

- 11: Economic Impact of Cancer. Available online: https://www.cancer.org/cancer/cancer-basics/economic-impact-of-cancer.html (accessed on 19 October 2021).
- 12: Schaper, N.C.; Van Netten, J.J.; International Working Group on the Diabetic Foot (IWGDF). Prevention and management of foot problems in diabetes: A Summary Guidance for Daily Practice 2015, based on the IWGDF guidance documents. *Diabetes Res. Clin. Pract.* **2017**, *124*, 84–92
- 13: Bonora, E.; Cataudella, S. Under the mandate of the Italian Diabetes Society. Clinical burden of diabetes in Italy in 2018: A look at a systemic disease from the ARNO Diabetes Observatory. *BMJ Open Diabetes Res. Care* **2020**, *8*, e001191.
- 14: Gazzetta Ufficiale della Repubblica Italiana. Ripartizione del Fondo Sanitario Nazionale. Available online: http://www.regioni.it/news/2019/02/28/riparto-fondo-sanitario-nazionale-2018-delibera-cipe-28-11-2018-gazzetta-ufficiale-n-49-del-27-febbraio-2019-595365 (accessed on 1 October 2023)
- 15: Seghieri, C.; Ferrè, F. Healthcare costs of diabetic foot disease in Italy: Estimates for event and state costs. *Eur. J. Health Econ.* **2022**, *24*, 167–169